

Phase Noise Measurement Software R&S FS-K4

Phase noise measurements with Spectrum Analyzers R&S FSE/FSIQ/FSP/FSU/FSQ and EMI Test Receivers R&S ESIB/ESPI

- User-editable sweep settings
- Fast residual FM/φM measurements
- Comprehensive marker functions
- Storage of results and settings
- Detailed screen printouts

Phase Noise Measurement Software R&S FS-K4 extends the measurement capabilities of Rohde & Schwarz spectrum analyzers and EMI test receivers to give a phase noise tester. The R&S FSE, the R&S FSU and the R&S FSQ are ideal for this purpose because of their low inherent phase noise and noise figure.

The high phase noise measurement speed is achieved through the high sweep rates of all analyzers. It is possible to trade off speed against accuracy at small resolution bandwidths ($\leq 1 \text{ kHz}$) by using either FFT or digital filters. The software allows different settings within a phase noise diagram, e.g. FFT close to the carrier and analog/digital filters far off the carrier.

Software R&S FS-K4 runs on the R&S FSE with the Controller Function R&S FSE-B15 fitted (Windows NT), or on an external PC (Windows 9x or later) with GBIP controller. The R&S FSIQ/FSQ/FSP/FSU/ESIB/ ESPI provide the controller function as standard.

Marker functions

The marker functions allow easy display of numeric phase noise values for a specified carrier offset; for continuous phase noise measurement at a specified frequency, the analyzers are tuned to the marker frequency

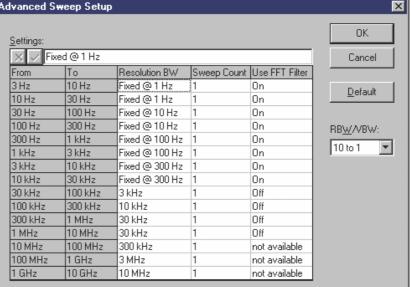
Sweep settings

Resolution bandwidth and sweep count can be set separately for each frequency range

Detailed screen printouts

Screen printouts with editable comments allow fast and detailed documentation of measurement results

Storage of results


Storage of all measurement results together with relevant analyzer settings for each result on hard disk or floppy disk

Fast residual FM/oM measurements

After positioning of marker and delta marker in the phase noise diagram, the residual FM/ ϕ M is calculated by Software R&S FS-K4 for the selected offset range; the residual ϕM is displayed in degrees and radians

Limit line

An editable limit line allows fast comparison of measurement results and specified limits

Advanced Sweep Setup

Specifications

Frequency range

i iequelley lange	
R&S FSEA 30 R&S FSEB 30	20 Hz to 3.5 GHz 20 Hz to 7 GHz
R&S FSEM 30	20 Hz to 26.5 GHz
R&S FSEK30	20 Hz to 40 GHz
R&S FSI03	20 Hz to 3.5 GHz
R&S FSI07	20 Hz to 7 GHz
R&S FSIQ26	20 Hz to 26.5 GHz
R&S ESIB7	20 Hz to 7 GHz
R&S ESIB26	20 Hz to 26.5 GHz
R&S ESIB 40	20 Hz to 40 GHz
N&3 E3ID 40	20 HZ 10 40 GHZ
B&S FSP3	9 kHz to 3 GHz
R&S FSP7	9 kHz to 7 GHz
R&S FSP 13	9 kHz to 13 GHz
R&S FSP 30	9 kHz to 30 GHz
R&S FSP40	9 kHz to 40 GHz
R&S ESP13	9 kHz to 3 GHz
R&S ESPI7	9 kHz to 7 GHz
103 2017	J KIIZ LU / UIIZ
R&S FSU3/R&S FS03	20 Hz to 3 GHz
R&S FSU8/R&S FSO8	20 Hz to 8 GHz
R&S FSU26/R&S FS026	20 Hz to 26.5 GHz
	20 112 10 20.0 0112
Averaging	
RBW:VBW ratio in video averaging	1.10 1.1 10.1
	1.10, 1.1, 10.1

in the second gring	
Trace averaging	implemented

Smoothing window 1 to 199 points

Carrier offset frequency range

The maximum number of decades that can be represented in a phase noise diagram is defined by the carrier offset frequency range.

Lower offset limit

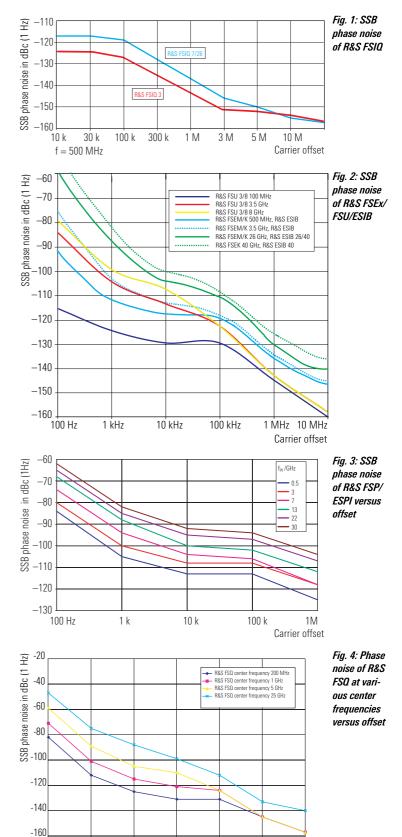
AII R&S FSE, R&S FSIQ, R&S ESIB, R&S FSP R&S ESPI models	10 Hz			
All R&S FSU and R&S FSQ models	1 Hz			
Upper offset limit				
Upper offset limit				
Upper offset limit Analyzer frequency range <10 GHz	1 GHz			

Nominal measurement accuracy (RSS error, 95% confidence level)

Minimum phase noise level 95 dB below reference level, FFT deactivated, return loss of source >14 dB (VSWR <1.5: 1), signal-to-noise ratio \ge 10 dB

Center frequency	≤3.5 GHz	≤7 GHz	≤18 GHz	≤26.5 GHz	≤40 GHz
Offset ≤10 MHz	1.5 dB	1.6 dB		1.9 dB	
Offset >10 MHz	1.8 dB	2 dB	2.9 dB	3.4 dB	3.9 dB

±0.8 dB


Repeatability

(95% confidence level)

RBW:VBW 10:1, trace averaging <15, smoothing window \geq 9

System phase noise

A systematic measurement uncertainty is introduced by the inherent phase noise of the measuring instrument. Figures below show typical phase noise curves of the analyzer models for different center frequencies.

100 kHz

1 MHz

10 MHz

-180_____ 10 Hz

100 Hz

1 kHz

10 kHz

System requirements

Control via external PC/IEEE bus

Windows 9x/NT4.0/2000/XP (English version) IEEE488 interface AT/TNT/PCMCIA IEEE card

Control via R&S FSE Controller R&S FSE-B15 for R&S FSE

Control via R&S FSIQ/ESIB

Control via R&S FSP/FSU/FSQ//ESPI

External keyboard and mouse (i.e. R&S PSP-Z2 and R&S FSE-Z2)

Ordering information

EMI Test Receiver R&S ESIB

Test Receiver R&S ESPI

Signal Analyzer R&S FSQ

Phase Noise Measurement Software	R&S FS-K4	1108.0088.02			
Recommended options for R&S FSE					
Controller for R&S FSE (Windows NT, English) Increased Level Accuracy up to 2 GHz	R&S FSE-B15 R&S FSE-B22	1073.5696.06 1106.3480.02			
Related data sheets					
Spectrum Analyzers R&S FSEx Spectrum Analyzer R&S FSP Spectrum Analyzer R&S FSU Signal Analyzer R&S FSIQ	PD 0757.1519 PD 0757.5137 PD 0757.6504 PD 0757.4160				

PD 0757.4576

PD 0757.6540

PD 0757.7652

